Philadelphia University

Lecture Notes for 650364

Probability \& Random Variables

Chapter 1:

Lecture 1: Introduction and Set Theory

Department of Communication \& Electronics Engineering

Instructor
 Dr. Qadri Hamarsheh

Email: qhamarsheh@philadelphia.edu.jo
Website: http://www.philadelphia.edu.jo/academics/qhamarsheh

Probability

1) Introduction

2)Set Definitions
3)Set Operations
4)Probability Introduced Through Sets and Relative Frequency
5)Joint and Conditional Probability
6)Total Probability and Bayes' Theorem
7)Independent Events
8)Combined Experiments
9)Bernoulli Trials

1)Introduction

\checkmark The primary goals are:

- To introduce the principles of random signals.
- To provide tools whereby one can deal with systems involving such signals.
\checkmark A random signal is a time waveform that can be characterized in some probabilistic manner.
- Examples: broadcast radio receiver, different types of noises, TV system and its noises, sonar system randomly generated sea sounds and bits in a computer bit stream.
\checkmark Probability can be defined as the mathematics of chance.
\checkmark Probability is a field of mathematics, which investigates the behavior of mathematically defined random experiments
\checkmark Combining events: We can form new events from events by using logical rules: Let A, B are some events
- "A and B occur"
- "A or B occur"
- "A does not occur"
- "B occurs, but A does not"
\checkmark In order to determine the probabilities, we must express the events using set theory.

2)Set Definitions

\checkmark A set is a collection of objects called elements of the set.

- Examples: set of voltages, set of numbers.
- A set of sets sometimes called class of sets.
\checkmark A set is usually denoted by a capital letter while an element is represented by a lower-case letter.
- If a is an element of set A, then we write

$$
a \in A
$$

- If a is not an element of set A, then we write

$$
a \notin A
$$

\checkmark A set is specified by the content of two braces: $\{$.
\checkmark Two methods exist for specifying content:

- The tabular method.
- The rule method.
- Examples:
- The set of all integers between 5 and 10 would be:
o In tabular method such as:
- $\mathbb{A}=\{6,7,8,9\}$.
- S = \{book, cell phone, mp3, paper, laptop\}
- In rule method such as: \{integers between 5 and 10\}
- A set with a large or infinite number of elements are best described by a statement or rule method. for example:
- \{Integers from 5 to 10000 inclusive\}
$0 S=\{x \mid x$ is a city with a population over lmillion $\}$
\checkmark Countable and Uncountable Sets:
- A set is called countable if its elements can be put in one-toone correspondence with natural numbers.
- Examples:

○ $\bar{A}=\{1,3,5,7\}$

- $\mathbf{S}=\{\mathbf{H}, \mathrm{T}\}$
$\circ \mathbf{B}=\{1,2,3, \ldots .$.
- A set is called uncountable, if its elements not countable
- Examples:

○ $\mathbf{C}=\{0.5<\mathrm{c} \leq 8.5\}$
$\circ \mathbf{D}=\{-0.5<d \leq 12.0\}$
$-\mathbf{S}=\{\mathbf{t} \mid \mathbf{t}>0\}$

- Empty set or null set is a set, which contains no elements, at all, denoted by the symbol \varnothing and written as \{ \}.
\checkmark A finite set: is either empty or has elements that can be counted.
- Examples:
- $\boldsymbol{A}=\{1,3,5,7\}$
$\circ \mathbf{D}=\{0.0\} \leftarrow$ not the null set, it has one element
- $E=\{2,4,6,8,10,12,14\}$
\checkmark If a set is not finite it is called infinite.
- Examples:
- $\mathbf{B}=\{1,2,3, \ldots .$.
- $\mathbf{C}=\{0.5<c \leq 8.5\}$
$\circ \mathbf{D}=\{-0.5<d \leq 12.0\}$
\checkmark The set A is called a subset of B if every element in A is also an element in B (A contained in B), we write

$$
A \subseteq B
$$

\checkmark If at least one element exists in B which is not in A, then A is a proper subset of B, denoted by

$$
A \subset B
$$

\checkmark The null set is clearly a subset of all other sets.
\checkmark Two sets A and B is called disjoint or mutually exclusive if they have no common elements :

$$
A \cap B=A B=\emptyset
$$

- Examples:

$$
\begin{array}{ll}
A=\{1,3,5,7\} & B=\{1,2,3, \ldots\} \\
C=\{0.5<c \leq 8.5\} & D=\{0.0\} \\
E=\{2,4,6,8,10,12,14\} & F=\{-5.0<\boldsymbol{f} \leq 12.5\}
\end{array}
$$

$\bigcirc \bar{A}$: tabular-specified countable and finite.
\bigcirc B: is also tabular-specified and countable but infinite.
\circ C: rule- specified, uncountable and infinite.
$\bigcirc \mathbf{D}$ and E are mutually exclusive.
$\bigcirc \mathbf{F}$ is uncountable and infinite
\circ Set \bar{A} is contained in set B, C and F.
$\circ \boldsymbol{C} \subset \boldsymbol{F}, \boldsymbol{D} \subset \boldsymbol{F}, \boldsymbol{E} \subset \boldsymbol{B}$
\circ Sets \bar{A}, \mathbf{D} and \mathbf{E} are mutually exclusive.
\checkmark The largest set of objects under discussion in a given situation is called the universal set, denoted S.

- Examples: In the problem of rolling a die, we are interested in the numbers that show on the upper face. The universal set is

$$
S=\{1,2,3,4,5,6\}
$$

\checkmark For any universal set with N elements, there are 2^{N} possible subsets of S .

3)Set Operations

\checkmark Geometrical representation of the sets using Venn diagram. The relationship between subsets and the universal set can be illustrated graphically using Venn diagram.

- Sets are represented by closed-plane figures.

\checkmark Equality: Two sets A and B are equal if and only if they have the same elements. We write $A=B$

$$
A \subseteq B \text { and } B \subseteq A
$$

\checkmark Difference: The difference of two sets A and B, is the set containing all elements of A that are not present in B. We write

$$
A-B
$$

- Example:

If $A=\{0.6<a \leq 1.6\}$ and $B=\{1.0 \leq b \leq 2.5\}$ Then $A-B=\{0.6<c<1.0\}$ $B-A=\{1.6<c \leq 2.5\}$

- Note that $A-B \neq B-A$
\checkmark The union of two sets A and B, written as $C=A U B$, is the set containing all elements of both A and B or both, Union sometimes called the sum of two sets.
\checkmark The intersection of two sets A and B, written as $D=A \cap B$, is the set of all elements common to both A and B. Intersection sometimes called the product of two sets.
- For mutually exclusive sets A and $B, A \cap B=\varnothing$

\checkmark In general case, the union and intersection of N sets An , $\mathrm{n}=1,2,3, \ldots, \mathrm{~N}$, become:

$$
\begin{aligned}
& A_{1} \cup A_{2} \cup \cdots \cup A_{N}=\bigcup_{n=1}^{N} A_{n} \\
& A_{1} \cap A_{2} \cap \cdots \cap A_{N}=\bigcap_{n=1}^{N} A_{n}
\end{aligned}
$$

\checkmark The complement of set A, denoted by \bar{A}, is the set of all elements not in A.

- Note that:

$$
\bar{S}=\Phi, \quad \bar{\Phi}=S, \quad A \cup \bar{A}=S \quad \text { and } \quad A \cap \bar{A}=\Phi
$$

\checkmark Example:
Given the four sets:

$$
\begin{aligned}
& S=\{1 \leq \text { integers } \leq 12\} \\
& A=\{1,3,5,12\} \\
& B=\{2,6,7,8,9,10,11\} \\
& C=\{1,3,4,6,7,8\}
\end{aligned}
$$

Then

$$
A U B=\{1,2,3,5,6,7,8,9,10,11,12\}
$$

$$
\begin{aligned}
& A U C=\{1,3,4,5,6,7,8,12\} \\
& B U C=\{1,2,3,4,6,7,8,9,10,11\} \\
& A \cap B=\emptyset, A \cap C=\{1,3\}, B \cap C=\{6,7,8\} \\
& \bar{A}=\{2,4,6,7,8,9,10,11\} \\
& \bar{B}=\{1,3,4,5,12\} \\
& \bar{C}=\{2,5,9,10,11,12\}
\end{aligned}
$$

\checkmark Algebra of Sets:

- Commutative Law:

$$
\begin{aligned}
& A \cap B=B \cap A \\
& A \boldsymbol{U} B=B \boldsymbol{U} A
\end{aligned}
$$

- Distributive Law:

$$
\begin{aligned}
& A \cap(B U C)=(A \cap B) U(A \cap C) \\
& A U(B \cap C)=(A U B) \cap(A U C)
\end{aligned}
$$

- Associative Law:

$$
\begin{aligned}
& (A \cup B) U C=A U(B U C)=A U B U C \\
& (A \cap B) \cap C=A \cap(B \cap C)=A \cap B \cap C
\end{aligned}
$$

- De Morgan's Law:

$$
\begin{aligned}
& \overline{A \cup B}=\bar{A} \cap \bar{B} \\
& \overline{A \cap B}=\bar{A} \cup \bar{B}
\end{aligned}
$$

Replace unions by intersections, intersections by unions, by use of a venn

- Duality Principle:

In any an identity we replace unions by intersections, intersections by unions, S by \varnothing, and \varnothing by S, then the identity is preserved.

$$
\begin{aligned}
& A \cap(B U C)=(A \cap B) U(A \cap C) \\
& A U(B \cap C)=(A U B) \cap(A U C)
\end{aligned}
$$

