Philadelphia University

Lecture Notes for 650364

Probability & Random Variables

Chapter 1:

Lecture 1: Introduction and Set Theory

Department of Communication & Electronics Engineering

Instructor Dr. Qadri Hamarsheh

Email:qhamarsheh@philadelphia.edu.joWebsite:http://www.philadelphia.edu.jo/academics/qhamarsheh

Probability

- 1)<u>Introduction</u>
- 2)<u>Set Definitions</u>
- 3)<u>Set Operations</u>
- **4)Probability Introduced Through Sets and Relative Frequency**
- 5) Joint and Conditional Probability
- 6)Total Probability and Bayes' Theorem
- 7)Independent Events
- 8)Combined Experiments
- 9)Bernoulli Trials

1)Introduction

✓ The **primary goals** are:

- To introduce the principles of **random signals**.
- To provide **tools** whereby one can deal with systems involving such signals.
- A random signal is a time waveform that can be characterized in some probabilistic manner.
 - **Examples**: broadcast radio receiver, different types of noises, TV system and its noises, sonar system randomly generated sea sounds and bits in a computer bit stream.

✓ **Probability** can be defined as the **mathematics of chance**.

- Probability is a field of mathematics, which investigates the behavior of mathematically defined random experiments
- Combining events: We can form new events from events by using logical rules: Let A, B are some events
 - "A and B occur"
 - "A or B occur"
 - "A does not occur"

• "B occurs, but A does not"

✓ In order to determine the probabilities, we must express the events using set theory.

2)Set Definitions

 \checkmark A set is a collection of objects called elements of the set.

- **Examples**: set of voltages, set of numbers.
- A *set of sets* sometimes called **class** of sets.
- ✓ A set is usually denoted by a **capital letter** while an element is represented by a **lower-case letter**.
 - If *a* is an element of set *A*, then we write

$a \in A$

• If a is not an element of set A, then we write

$a \notin A$

 \checkmark A set is specified by the content of two braces: {.}

- \checkmark Two methods exist for specifying content:
 - The **tabular** method.
 - The **rule** method.

• Examples:

- The set of all integers between 5 and 10 would be:
 - \circ In tabular method such as:
 - **A** = {6,7,8,9}.
 - S = {book, cell phone, mp3, paper, laptop}
 - o In rule method such as: {integers between 5 and 10}
- A set with a large or infinite number of elements are best described by a statement or rule method. for example:
 - o {Integers from 5 to 10000 inclusive}
- S = {x | x is a city with a population over 1million}
 ✓ Countable and Uncountable Sets:
 - A set is called **countable** if its elements can be put in one-toone correspondence with **natural numbers**.
 - Examples:

```
○ A = {1, 3, 5, 7}
○ S={H,T}
○ B = {1, 2, 3, ....}
```

• A set is called **uncountable**, if its elements not countable

• Examples:

```
\circ C = {0.5 < c ≤ 8.5}
\circ D = {-0.5 < d ≤ 12.0}
\circ S = {t | t>0}
```

• **Empty** set or **null** set is a set, which contains no elements, at all, denoted by the symbol Ø and written as { }.

 \checkmark A finite set: is either empty or has elements that can be counted.

• Examples:

 \circ **A** = {1, 3, 5, 7}

 \circ **D** = {0.0} \leftarrow not the null set, it has one element

 \circ **E** = {2, 4, 6, 8, 10, 12, 14}

 \checkmark If a set is not finite it is called **infinite**.

Examples:
B = {1,2,3,....}
C = {0.5 < c ≤ 8.5}
D = {-0.5 < d ≤ 12.0}

The set A is called a subset of B if every element in A is also an element in B (A contained in B), we write

$A \subseteq B$

✓ If at least one element exists in B which is not in A, then A is a proper subset of B, denoted by

$A \subset B$

 \checkmark The null set is clearly a subset of all other sets.

Two sets A and B is called **disjoint** or **mutually exclusive** if they have no common elements :

$$A \cap B = AB = \emptyset$$

• Examples:

- $A = \{1, 3, 5, 7\}$
- $C = \{0.5 < c \leq 8.5\}$
- $E = \{2, 4, 6, 8, 10, 12, 14\}$
- $B = \{1, 2, 3, ...\}$ $D = \{0, 0\}$ $F = \{-5, 0 < f \le 12, 5\}$

 \odot A: tabular-specified countable and finite.

• B: is also tabular-specified and countable but infinite.

- C: rule- specified, uncountable and infinite.
- D and E are mutually exclusive.
- **F** is uncountable and infinite

• Set A is contained in set B, C and F.

 $\circ C \subset F , D \subset F , E \subset B$

• Sets A, D and E are mutually exclusive.

✓ The largest set of objects under discussion in a given situation is called the universal set, denoted S.

 Examples: In the problem of rolling a die, we are interested in the numbers that show on the upper face. The universal set is S = {1,2,3,4,5,6}

 \checkmark For any universal set with N elements, there are 2^N possible subsets of **S**.

3)Set Operations

 Geometrical representation of the sets using Venn diagram. The relationship between subsets and the universal set can be illustrated graphically using Venn diagram.

• Sets are represented by closed-plane figures.

✓ Equality: Two sets A and B are equal if and only if they have the same elements. We write A = B $A \subseteq B$ and $B \subseteq A$

A –B

• Example:

If
$$A = \{0.6 < a \le 1.6\}$$
 and $B = \{1.0 \le b \le 2.5\}$
Then $A - B = \{0.6 < c < 1.0\}$
 $B - A = \{1.6 < c \le 2.5\}$
Note that $A - B \neq B - A$

- ✓ The **union** of two sets A and B, written as C = A U B, is the set containing all elements of both A and B or both, Union sometimes called the **sum** of two sets.
- ✓ The intersection of two sets A and B, written as $D = A \cap B$, is the set of all elements common to both A and B. Intersection sometimes called the **product** of two sets.
 - For mutually exclusive sets A and B, $A \cap B = \emptyset$

✓ In general case, the union and intersection of N sets An, n=1,2,3,....,N, become:

$$A_1 \bigcup A_2 \bigcup \dots \bigcup A_N = \bigcup_{n=1}^N A_n$$
$$A_1 \bigcap A_2 \bigcap \dots \bigcap A_N = \bigcap_{n=1}^N A_n$$

✓ The **complement** of set A, denoted by \overline{A} , is the set of all elements not in A.

• Note that:

$$\overline{S} = \Phi, \quad \overline{\Phi} = S, \quad A \bigcup \overline{A} = S \quad \text{and} \quad A \cap \overline{A} = \Phi$$

✓ **Example**:

Given the four sets:

$$S = \{1 \le integers \le 12\}$$

$$A = \{1, 3, 5, 12\}$$

$$B = \{2, 6, 7, 8, 9, 10, 11\}$$

$$C = \{1, 3, 4, 6, 7, 8\}$$

Then

$$A U B = \{1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12\}$$

$$A U C = \{1, 3, 4, 5, 6, 7, 8, 12\}$$

$$B U C = \{1, 2, 3, 4, 6, 7, 8, 9, 10, 11\}$$

$$A \cap B = \emptyset, A \cap C = \{1, 3\}, B \cap C = \{6, 7, 8\}$$

$$\overline{A} = \{2, 4, 6, 7, 8, 9, 10, 11\}$$

$$\overline{B} = \{1, 3, 4, 5, 12\}$$

$$\overline{C} = \{2, 5, 9, 10, 11, 12\}$$

✓ Algebra of Sets:

• Commutative Law:

$$A \cap B = B \cap A$$
$$A \cup B = B \cup A$$

• Distributive Law:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

• Associative Law:

(A U B) UC = A U (B UC) = A U B UC $(A \cap B) \cap C = A \cap (B \cap C) = A \cap B \cap C$

• De Morgan's Law:

$$\overline{\overline{A \cup B}} = \overline{\overline{A}} \cap \overline{\overline{B}}$$
$$\overline{\overline{A} \cap \overline{B}} = \overline{\overline{A}} \cup \overline{\overline{B}}$$

Replace unions by intersections, intersections by unions, by use of a venn

• Duality Principle:

In any an identity we replace unions by intersections, intersections by unions, \mathbf{S} by $\mathbf{\emptyset}$, and $\mathbf{\emptyset}$ by \mathbf{S} , then the identity is preserved.

 $A \cap (B UC) = (A \cap B) U (A \cap C)$ $A U (B \cap C) = (A U B) \cap (A UC)$